Compact rotation invariant descriptor for non-local means
نویسندگان
چکیده
Non-local means is a recently proposed denoising technique that better preserves image structures than other methods. However, the computational cost of non-local means is prohibitive, especially for large 3D images. Modifications have previously been proposed to reduce the cost, which result in image artefacts. This paper proposes a compact rotation invariant descriptor. Testing demonstrates improved denoising performance relative to optimized non-local means. Rotation invariant non-local means is an order of magnitude faster.
منابع مشابه
Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features
In this paper, we propose Local Binary Pattern Histogram Fourier features (LBP-HF), a novel rotation invariant image descriptor computed from discrete Fourier transforms of local binary pattern (LBP) histograms. Unlike most other histogram based invariant texture descriptors which normalize rotation locally, the proposed invariants are constructed globally for the whole region to be described. ...
متن کاملRotationally Invariant Hashing of Median Binary Patterns for Texture Classification
We present a novel image feature descriptor for rotationally invariant 2D texture classification. This extends our previous work on noise-resistant and intensity-shift invariant median binary patterns (MBPs), which use binary pattern vectors based on adaptive median thresholding. In this paper the MBPs are hashed to a binary chain or equivalence class using a circular bit-shift operator. One bi...
متن کاملRotated Local Binary Pattern (RLBP) - Rotation Invariant Texture Descriptor
In this paper we propose two novel rotation invariant local texture descriptors. They are based on Local Binary Pattern (LBP), which is one of the most effective and frequently used texture descriptor. Although LBP efficiently captures the local structure, it is not rotation invariant. In the proposed methods, a dominant direction is evaluated in a circular neighbourhood and the descriptor is c...
متن کاملInvariant texture retrieval using modified Zernike moments
This paper presents an effective texture descriptor invariant to translation, scaling, and rotation for texture-based image retrieval applications. In order to find the minimal matching distance between two descriptors, existing frequency-layout descriptors require a lot of distance calculations with every possible combination of scaling and rotation values because they are not invariant to geo...
متن کاملTOPOLOGICALLY STATIONARY LOCALLY COMPACT SEMIGROUP AND AMENABILITY
In this paper, we investigate the concept of topological stationary for locally compact semigroups. In [4], T. Mitchell proved that a semigroup S is right stationary if and only if m(S) has a left Invariant mean. In this case, the set of values ?(f) where ? runs over all left invariant means on m(S) coincides with the set of constants in the weak* closed convex hull of right translates of f. Th...
متن کامل